

MAINSTREAMING PREVENTION AND CONTROL MEASURES FOR INVASIVE ALIEN SPECIES INTO TRADE, TRANSPORT AND TRAVEL ACROSS THE PRODUCTION LANDSCAPE

REVIEW AND EVALUATION OF INVASIVE ALIEN SPECIES (IAS) CONTROL AND ERADICATION ACTIVITIES IN SEYCHELLES AND DEVELOPMENT OF A FIELD GUIDE ON IAS MANAGEMENT

REVIEW OF IAS CONTROL AND ERADICATION PROGRAMMES IN SEYCHELLES

0000000 ANNEXES ONLY 0000000

Prepared by the Plant Conservation Action group

Editors: Katy Beaver and James Mougal

December 2009

ANNEX 1 I.A.S. QUESTIONNAIRE RESPONSES AND ANALYSIS

The Questionnaire

A questionnaire was devised by PCA and circulated to around 45 stakeholder organisations (often several individuals within the organisation to be more likely of getting a response - some 70 people in all). Organisations included different sections of the Department of Environment DoE; parastatal organisations (Seychelles Agricultural Agency SAA, Seychelles National Parks Authority SNPA); environmental NGOs; island managers; eco-tourism hotels and resorts (some on small islands, others on the main islands); other protected area managers; and individuals who might have experience of dealing with IAS in their work or as landowners.

Question 1 was designed to find out:

- a) which Invasive Alien Species (IAS) are the most problematic for these stakeholders,
- b) which of these IAS they are currently controlling,
- c) which IAS have been a problem in the past and have been eradicated, or controlled but rebounded.

A Table of possible IAS was presented so that it was easy for respondents to check and to add extra species if necessary (see Results Table on p 7)

Questions 2 to 6 were designed to find out:

- a) whether there might be unpublished reports available that PCA had not seen,
- b) whether the stakeholder would be willing to share information and experience, and if so, how freely,
- c) for which invasive species stakeholders require more management information,
- d) whether it would be useful to have a system for prioritising IAS control.

Responses

Around 25 responses were obtained, with 21 being in the form of returned Questionnaires by organisations (an almost 50% return). There was a general tendency for stakeholders to focus on IAS that are more problematic to their respective organisations, therefore some of the questionnaires were only partially completed.

The IAS which are important for stakeholders

The Table of results for Question 1 is given on pages 7-10). A summary table ranking all named IAS, from most often reported to least often reported, is given on page 3. Similar group summaries (e.g. Birds, Trees) are given on pages 4-6. An overall verbal summary is given below:

- The biggest current problem species appears to be Spiralling whitefly (14 respondents).
- Next most reported are Black rat and Mealy bugs (Lipou blan) (9 and 8 respondents respectively).
- Several species were reported by 7 respondents Indian myna, Giant African snail, Scale insects, Albizia, Lantana (Vyeyfiy), Leucena (Kassi) and Takamaka Wilt disease.
- Also important (5-6 respondents) are Feral cat and Yellow crazy ant (as animals), with the remainder being plant species Cocoplum (Prindfrans), *Stachytarpheta* (Zepible), *Alstonia* (Bwa zonn), Coconut, *Clidemia* (Fo watouk), Water lettuce and Philodendron creepers.
- Some species were only a problem on specific outer islands, e.g. Feral goat on Aldabra, several ornamental plants (Oleander, Oyster plant, Lys-bordmer) on Alphonse).
- Interestingly the *Merremia* creeper which is so prevalent on Mahé does not yet appear to be a problem on other islands.
- In certain cases invasive species have been controlled but have returned in greater numbers or remain a problem, e.g. Black rat, Indian myna, Mealy bugs, Takamaka Wilt disease.
- Overall, respondents are managing or controlling about 58% of the species they recorded as being a problem.
- There was a disagreement on the invasive status of a few species, e.g. Papaya, among stakeholders.

Responses to Questions 2 to 6

- Might you have additional unpublished reports about IAS control that we may not have found during our research?
 Yes: 5
 No: 14
- If any species (IAS) is currently being managed by your organisation, would you be willing to share your experience with other stakeholders, for the benefit of all?
 Yes (unconditional): 10 Yes, with certain limitations: 9 No: 0
- 4. Do you have other important lessons/experience with IAS that you are willing to share with others? (We would be particularly grateful for information on IAS control/maintenance costs and effectiveness) Yes: 9 No: 8
- 6. Would it be useful to you to have a system for prioritising control of problem species (e.g. a chart with specific criteria) in order to decide which species to tackle first?

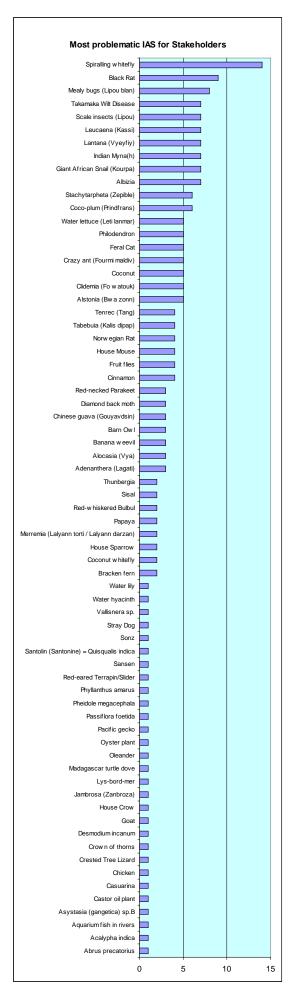
Yes: 14 No: 3

Note that Question 5 required specific IAS to be named in order to acquire further information. These species will be followed up in the Field Guide to best IAS management practices.

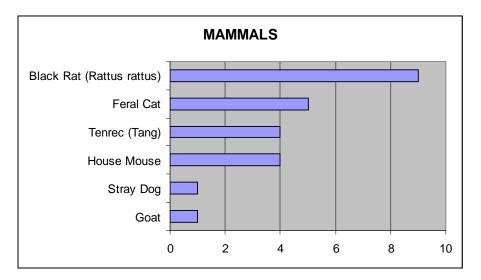
Comments

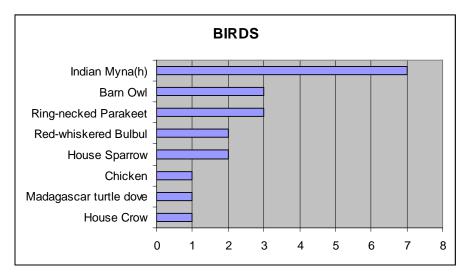
- <u>Question 2</u>: It seems that a few unpublished reports from five sources may still be extant but as some respondents are reluctant to share unconditionally, these may remain unavailable.
- <u>Question 3</u>: Some information relating to control of invasive alien species may still require documenting or validating, although again, certain respondents are reluctant to share their information unconditionally so it may remain unavailable.
- <u>Question 4</u>: Likewise for sharing of important lessons learned some information can be followed up but there remains a reluctance to share without specific conditions attached.
- <u>Question 6</u>: The majority of respondents would find it useful to have a mechanism for prioritising problem species that require control.

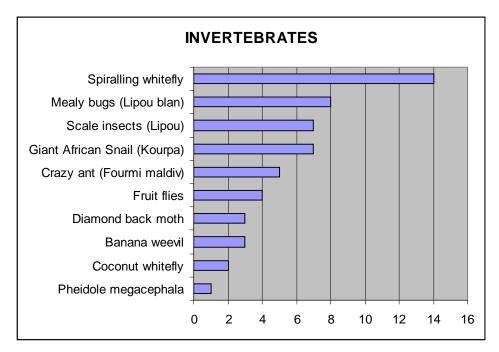
The general reticence of certain managers, NGOs and staff in sharing useful information is a well known phenomenon in Seychelles. While it is understood that there are certain reasons for this, it is regrettable to see that people are reluctant to share their experience and knowledge with each other for fear that someone else will take the information and use it in some way that benefits himself or herself, their island or their organisation alone. But that is life, and a way around this problem would be useful to find! However, we would like to sincerely thank all the respondents who have agreed to share their information unconditionally or with limited conditions for the benefit of others.

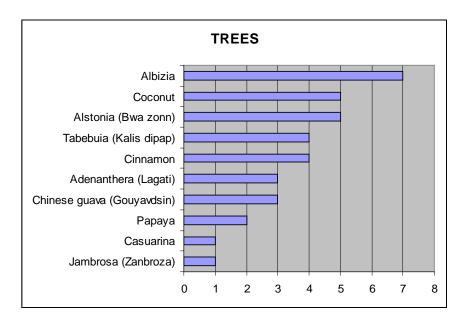

Conclusions

Overall the responses to the Questionnaire have helped to identify that:

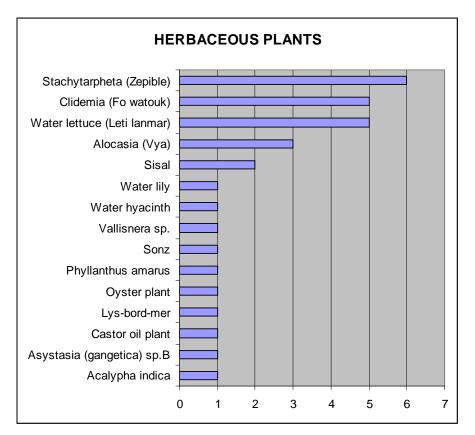

- Spiralling whitefly is the most serious pest, and Black rats and Mealy bugs remain a problem in spite of control programmes;
- that there are many IAS which are a problem for stakeholders and for which no reports are available regarding their management, even though the species are undergoing some sort of control;
- several common problem species remain difficult for stakeholders to control.

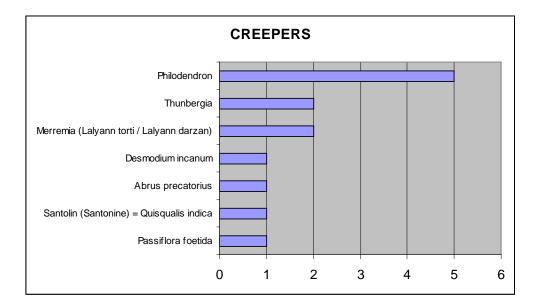

Recommendations

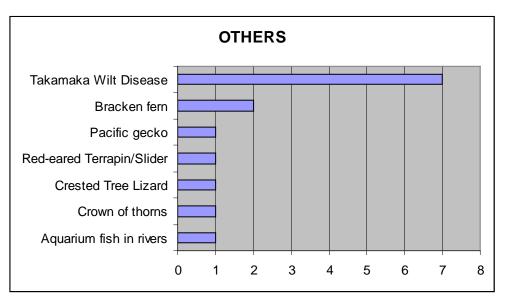

- 1. A suitable mechanism for prioritising the control of IAS requires development. This should be a future project or activity as it does not fall within the remit of this project. Some countries or areas have already developed such systems (e.g. Galapagos) which could be adapted for use in Seychelles.
- 2. Certain of the IAS mentioned by stakeholders probably require a national response rather than a response from individual stakeholders, e.g. Spiralling whitefly.



Group summaries







Results Table for Question 1

Is this species a major problem for your organisation?	Is this species currently being managed / controlled by your organisation?	Was this species once controlled but has increased in numbers again?	Was this species a problem in the past but is now eradicated?
5	5	0	5
9	6	2	3
4	1	1	2
0	0	0	0
4	1	0	0
1	1	0	1
4	1	0	0
1	0	0	0
1	1	0	0
3	1	1	0
2	1	0	0
3	2	0	1
7	3	2	0
2	0	1	0
1	1	0	0
1	0	0	0
1	1	0	0
1	1	0	0
1	0	0	0
	major problem for your organisation? 5 9 4 0 4 1 4 1 4 1 2 3 7 2 1	Is this species a major problem for your organisation? being managed / controlled by your organisation? 5 5 9 6 4 1 0 0 4 1 1 1 4 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 2 7 3 2 0 1 1 1 0 1 1	Is this species a major problem for your organisation? being managed / controlled by your organisation? controlled but has increased in numbers again? 5 5 0 9 6 2 4 1 1 0 0 0 4 1 1 1 0 0 4 1 0 1 1 0 4 1 0 1 1 0 1 1 0 1 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 3 2 0 7 3 2 2 0 1 3 2 0 7 3 2 2 0 1 1 0 0

Invasive Alien Species	Is this species a major problem for your organisation?	Is this species currently being managed / controlled by your organisation?	Was this species once controlled but has increased in numbers again?	Was this species a problem in the past but is now eradicated?
FISH				
Tilapia	0	0	0	0
Aquarium fish in rivers	1	0	0	0
Crown of thorns	1	1	1	0
INVERTEBRATES				
Crazy ant (Fourmi maldiv)	5	0	1	0
Giant African Snail (Kourpa)	7	4	1	1
Mealy bugs (Lipou blan)	8	3	2	0
Scale insects (Lipou)	7	3	1	0
Fruit flies	4	1	1	0
Spiralling whitefly	14	2	1	0
Banana weevil	3	1	1	0
Diamond back moth	3	1	1	0
Pheidole megacephala (Ant species)	1	1	1	0
Coconut whitefly	2	0	0	0
TREES				
Cinnamon	4	3	0	0
Chinese guava (Gouyavdsin)	3	2	0	1
Albizia	7	5	0	1
Alstonia (Bwa zonn)	5	5	0	0
<i>Tabebuia</i> (Kalis dipap)	4	4	0	0
Adenanthera (Lagati)	3	2	0	0
Coconut	5	5	0	0
Jambrosa (Zanbroza)	1	0	0	0
Papaya	2	1	0	1

Invasive Alien Species	Is this species a major problem for your organisation?	Is this species currently being managed / controlled by your organisation?	Was this species once controlled but has increased in numbers again?	Was this species a problem in the past but is now eradicated?
Casuarina	1	1	0	0
SHRUBS				
Coco-plum (Prindfrans)	6	3	0	0
Lantana (Vyeyfiy)	7	6	0	1
Leucaena (Kassi)	7	4	0	1
Oleander	1	1	0	0
HERBACEOUS				
<i>Clidemia</i> (Fo watouk)	5	4	1	0
Water lettuce (Leti lanmar)	5	2	0	0
Stachytarpheta (Zepible)	6	5	0	0
Alocasia (Vya)	3	1	0	0
Asystasia (gangetica) sp.B	1	1	0	0
Acalypha indica	1	1	0	0
Phyllanthus amarus	1	1	0	0
Sisal	2	1	1	0
Castor oil plant	1	1	0	0
Lys-bordmer	1	1	0	0
Oyster plant	1	1	0	0
Sonz	1	0	0	0
Water hyacinth	1	1	0	0
Water lily	1	1	0	0
Vallisnera sp.	1	1	0	0
CREEPERS				
Merremia (Lalyann torti / Lalyann darzan)	2	1	0	0

Invasive Alien Species	Is this species a major problem for your organisation?	Is this species currently being managed / controlled by your organisation?	Was this species once controlled but has increased in numbers again?	Was this species a problem in the past but is now eradicated?
Philodendron	5	3	0	0
Thunbergia	2	2	0	1
Passiflora foetida	1	2	0	0
Passiflora suberosa	0	1	0	0
Santolin (Santonine) = Quisqualis indica	1	1	0	1
Sansen?	1	1	0	1
Syngonum sp.	0	1	0	0
Abrus precatorius	1	1	0	0
Desmodium incanum	1	1	0	0
FERNS				
Bracken fern	2	2	0	0
FUNGI				
Takamaka Wilt Disease	7	3	1	0
Sandragon wilt				

ANNEX 2 List of stakeholder questionnaire respondents

Name of Organisation	Contact Person	Post Title	Contact Details
Cousine Island	Kevin Jolliffe	Conservation Officer	cousine2@seychelles.net Tel. 322961/713421
Fregate Island Private	Madel Wilkens Brent Whittington	Conservation Manager Ecology Manager	ecology@fregate.com Tel. 727421/727436
The Ecotourism Society of Seychelles (TESS)	Joseph Rath Marc Marengo	Programs Development Chairman	josephrath@hotmail.com Tel. 225914/526794
Nature Seychelles Denis/Cousin Islands	Terence Vel	Education & Advocacy Coordinator	wcs@natureseychelles.org Tel. 719047
Seychelles Agricultural Agency (SAA) Plant & Animal Health Service	Will Dogley	Manager	seypro@seychelles.net Tel. 611479/722607
Island Conservation Society (ICS) Aride/Alphonse Islands	Riaz Aumeeruddy	Science & Project Manger	icsscience@seychelles.sc Tel. 375354/71268
Seychelles Islands Foundation (SIF) Vallee de Mai/Aldabra Island	Nancy Bunbury Naomi Doak	Projects Programme Coordinator Aldabra Research Officer	nancy@sif.sc Tel. 321735/565621
Department of Environment (DoE) Conservation Section	Elvina Henriette Payet	Senior Project Officer	Tel. 670500
Island Conservation Society (ICS) Alphonse Islands	Pierre-Andre Adam	Scientific Officer	pierreandreadam@yahoo.co .uk Tel. 229040
Eden Island Development Horticultural Department	Steve Vinda Lucille Monty		lucille@edenisland.sc Tel. 346000
Department of Environment (DoE) Forestry Section	Basil Esther	Senior Project Officer	<u>b.esther@env.gov.sc</u> Tel. 670500
North Island	Linda Vanherck	Environment Officer	lindav@north-island.com Tel. 293186/576111
Seychelles National Park Authority (SNPA) Curieuse Island	Barbara Kilindo Michelle Etienne	Research Officers	b.hoareau@scmrt-mpa.sc Tel. 323494/522930
Banyan Tree Resort Seychelles	Cedrick Thomas	Chief Gardner	Tel. 522281
Barbarons Biodiversity Centre	Damien Doudee	Horticulturist	damien@cwci.blackberry.co m Tel. 722170
Fond Ferdinand Nature Reserve	Nigel Colin Valmont	Manager	<u>collinvO@gmail.com</u> Tel. 722881
Marine Conservation Society of Seychelles (MCSS)	Elke Talma David Rowat	Project Officer Chairman	<u>elke@mcss.sc</u> Tel. 261511/713500
Moyenne Island Nature Reserve	Brendon Grimshaw	Owner / manager	Tel. 552828
Department of Environment (DoE)	Murugaiyan Pugazhendui		Tel. 722415
Nature Protection Trust of Seychelles (NPTS) Silhouette Island	Justin Gerlach	Scientific Coordinator	jstgerlach@aol.com

ANNEX 3 Report of the IAS workshop held on 29 September 2009

REVIEW & EVALUATION OF INVASIVE ALIEN SPECIES CONTROL (IAS) AND ERADICATION ACTIVITIES IN SEYCHELLES and DEVELOPMENT OF A FIELD GUIDE ON IAS MANAGEMENT

REPORT OF THE WORKSHOP HELD ON

TUESDAY 29 SEPTEMBER 2009 08.30 - 12.00 CARE House conference and training room

The workshop had the following objectives:

- 1. To briefly review the results of Objective 1 (see below Review of IAS management field activities in the Seychelles), including the results of the Questionnaire previously sent out to most of the stakeholders.
- 2. To discuss what form of "field guide" (see Objective 2 below) would be most useful for stakeholders, and/or whether this is indeed the most valuable 'next step' in the consultancy as there are other options.
- 3. To make recommendations for this 'next step'.

The overall objectives of this consultancy are:

- 1. To review IAS management field activities in the Seychelles, with particular reference to mitigation, control and eradication measures, including an evaluation of their effectiveness and efficiency.
- 2. To develop a "field guide on IAS control and eradication measures".

Workshop participation

There were fewer participants at the workshop than the expected number of c.25 or more. Around 20 participants from government, environmental NGOs and parastatals were present, with no representatives from the private sector, which was disappointing as they could be one beneficiary of the expected output(s) from the following up activities. The participant list forms Annex 1 of this report.

Workshop programme

The Workshop programme forms Annex 2 of this report. The programme went more or less according to plan. Several additional small activities were included as part of the main programme, e.g. participants were asked to name the six IAS they assessed as being the priority species for the country; there was a small demonstration activity to reveal the complexity of dealing with IAS management.

Outcomes of Objective 1 (Review of IAS management report):

There were few comments on the review of the IAS field management activities in Seychelles, except for the possible need to standardise the definition of an Invasive Alien Species for the overall strategy for dealing with these species.

The main question regarding the review of the Questionnaire responses was how representative these were of the stakeholders who had been sent the questionnaire. It was explained that there was a broad range of responses, with around a 50% return from organisations, including NGOs, parastatals, protected areas, private islands, private enterprise, but no response from local community (districts).

Outcomes of Objective 2 (Group work to discuss the possible next steps)

Participants were divided randomly into 3 groups of c.6 people and asked to discuss the possible next steps for the project, using the guidelines given in Annex 3. In summary:

- 1. Field guide if so what kind and what format?
- 2. Field trials of management methods What? When? Where? Who?
- 3. Action plan? e.g. guidelines based on where we are at now.
- 4. System for prioritizing IAS problems / management? At national level? At individual management level?

Group 1

- This group eliminated '<u>Field trails</u>' as an immediate next step as they can be done in the future (this was also agreed by other participants), and incorporated the <u>Action plan</u> guidelines into the other possibilities.
- The <u>Field guide</u> could be better conceived as a <u>Toolkit</u> for how to manage IAS, which could be a technical document but aimed at the general public to help with decision-making. One person in the group felt strongly that it should be technical, as general education and awareness about IAS were not the point of this project.
- The toolkit would deal with the main problem species (including photos and other identification information) but also include brief information to help with identifying other species.
- It could include a decision-making "tree" with good and bad practice case studies for the problem species, together with resources (references and contacts) for management.
- <u>Prioritising</u> this could be done for species at a national level, e.g. through a stakeholder workshop.
- A prioritisation framework with criteria for IAS management could be at both a national level and a local level adapted for land owners and organisations. The framework would be roughly similar for both situations but with slightly different issues addressed.

Group 2

- This group concentrated on two possibilities for the next step.
- The <u>Field guide</u> could be in the form of an <u>on-line database</u> (perhaps with a CD-Rom), as this can be a more flexible tool than a printed book.
- Already-used management practices could be included and if there are none, this would be indicated. It might also be possible to use community-based information for management practices.
- The database would be updated as information becomes available.
- <u>Prioritising system</u> this would not be easy as different sectors have different priorities e.g. agriculture and conservation, so the criteria would have to be chosen carefully (see also the Additional Suggestion on page 3 with respect to identifying the 'top ten').
- It could lay out international standards for IAS management practices where they already exist (e.g. for many agricultural IAS), so that managers would follow a protocol.
- It could help build awareness of IAS and also provide practical solutions for management.

Group 3

- This group looked at all four 'next step' suggestions.
- The <u>Field guide</u> could be:
 - A small simple guide for general use to maximise IAS awareness about the main problem species (c.100 species), with identification pictures and practical management actions (+ references + internet links for more information);
 - A more technical guide which has best detailed management practices/options for the most problematic species, together with actions to take against re-invasion, and a section on the potential risks of new introductions, with examples of the most dangerous.
- <u>Field trials</u> are useful to advance knowledge on species about which little is known (e.g. non-native ants), or where the specific reactions of an IAS are not well understood. Possible field trials: rat eradication in mangrove areas, whitefly, invasive ants, etc
- Information gained during trials carried out at the Agricultural training centre could be disseminated for household use.
- Funding for trials could be from owners/managers, overseas funding agencies or possibly government.
- The Action plan should be part of the Biosecurity Policy/Strategy.
- Action plans should be prepared for, say, the top ten most problematic species (see also the Additional Suggestion on page 3 with respect to identifying the 'top ten').

• <u>Prioritisation</u> needs to be in the form of a dynamic national system and updated (e.g. every 5 years), with the rationale driven by stakeholders (at least one person in the group felt that this should include government, private or NGO institutions, or any individuals who have an interest and can contribute).

Outcome of the assessment of the most problematic IAS at a national level

Participants were asked to name the six most problematic species for the Seychelles by placing six coloured stickers on charts containing all the names of Invasive Alien problem species previously identified through the stakeholder questionnaire. Species in red are species which were added by workshop participants.

ANIMAL species	No. of stickers	PLANT species	No. of stickers			
Mamm	als	Trees				
Black rat	15	Cinnamon 6				
Feral cat	2	Chinese guava	4			
Norwegian rat	1	Albizia	3			
Feral goat	1	Alstonia (Bwa zonn)	4			
Bird	S	Jambrosa	1			
Indian myna	7	Chrysophyllum (star apple)	1			
Red-whiskered bulbul	2	Shrubs				
Madagascar turtle dove	2	Cocoplum	4			
Inverteb	rates	Lantana	1			
Yellow crazy ant	5	Ardisia spp.	2			
Spiralling whitefly	6	Creepers	<u> </u>			
Fruit flies	5	"Philodendron"	6			
Diamond-back moth	1	Merremia (lalyann darzan)	1			
Other ant species	1	Macfadyena unguis-cati	1			
Other an	imals	Lonicera spp.	1			
Pacific gecko	1	Lygodium japonicum (a fern) 1				
Crested tree lizard	1	Herbaceous species				
Man	1	Clidemia (fo watouk)	7			
		Water lettuce	1			
		Water hyacinth	1			

The top six are: Black rat (15) / Clidemia (7) / Indian myna (7) / Cinnamon (6) / "Philodendron" (6) / Spiralling whitefly (6).

It was pointed out that the choices of the participants were most probably influenced by their field of work and experience. It was noticeable for example that one participant added 5 new plant species to the list, which are all incipient invasive species. If this exercise was to be carried out further to get a national assessment, it would require defined criteria, and a more scientific assessment. Nevertheless, it was an interesting exercise to have carried out and would have given further food for thought if there had been a greater number of participants.

Additional suggestion

There was a suggestion that it might be necessary to produce separate 'Top Ten' IAS priority lists for e.g. the Conservation, Agriculture, Health and Community sectors. These lists should be reviewed every 5-10 years.

An interesting additional outcome arising from other activities in the workshop

Although we are not professional psychologists or human behaviourists, it was interesting to note the reluctance of a very small minority to participate fully in the additional creative activities that were included in the workshop and/or the production of logical rather than creative outputs, which to our minds suggests the difficulty which some people have with the use of the 'right side of the brain' in their work. Current problems with IAS require creative thinking for their solution as well as more rigorous scientific work and there is much need for creative thought processes.

CONCLUSIONS AND RECOMMENDATIONS

PCA's conclusions and suggestions based on the outcomes of the workshop:

- In general, the participants agreed that the PCA's review on IAS management activities in Seychelles was comprehensive and they did not have additional information to contribute.
- There is insufficient information available at the moment to produce a detailed field guide to best IAS management practices.
- Of the suggestions from stakeholders such as <u>an 'identification' field guide</u> with <u>practical management</u> <u>actions</u> for c.100 species, <u>a field guide</u> in the form of <u>an online database</u>, or <u>a detailed technical manual</u>, <u>guide or toolkit</u>, all would require considerable time <u>(6-8 months)</u> and effort to accomplish. At present, PCA does not have the time to produce such an output due to other prior commitments.
- However, based on the PCA review of IAS management programmes in Seychelles, it might be possible to produce a simple overall guide (e.g. 10 pages) to IAS management strategies. This would help stakeholders to understand what best practice involves (with a few local case studies of good and bad management) and an example of a decision-making tree that would assist stakeholders to decide whether or not management of a particular IAS is likely to be possible.

UNDP-GEF Biosecurity Project:

REVIEW & EVALUATION OF INVASIVE ALIEN SPECIES (IAS) CONTROL & ERADICATION ACTIVITIES IN SEYCHELLES and DEVELOPMENT OF A FIELD GUIDE ON IAS MANAGEMENT

29 September 2009 from 08.30am - 12.00 noon at CARE House Meeting Room, Freedom Square

No.	Name	Organisation	Contact/ E-mail address
1.	Sylvanna Antha	SNPA + PCA	s.antat@scmrt-mpa.sc
2.	James Mougal	SNPA + PCA	j.mougal@env.gov.sc
3.	Bruno Senterre	UNDP + PCA	bsenterre@gmail.com
4.	David Derand	Nature Seychelles	david@natureseychelles.org
5.	John Nevill	GIF	office@gif.sc
6.	Naomi Doak	SIF	research@sif.sc
7.	Anna Gray	SIF	anna@sif.sc
8.	Herve Barois	S4S	hbarois@yahoo.com
9.	Frauke F. Dogley	SIF + PCA	<u>ceo@sif.sc</u>
10.	Brad Auer	UNDP-GEF	Brad.auer@undp.org
11.	Lindsay Chong-Seng	SIF + PCA	L.chongseng@sif.sc
12.	Gerard Rocamora	ICS	whiteye@seychelles.net
13.	Randy Stravens	NPPO SAA	rs25goal@hotmail.com
14.	Danielle Dugasse	NPPO SAA	desparon@hotmail.com
15.	Andrew Jean-Louis	PCU	a.jeanlouis@pcusey.sc
16.	Elvina Henriette	DoE	elvinahenr@gmail.com
17.	Will Dogley	SAA	seypro@seychelles.net
18.	Jan Rijpma	UNDP-GEF	rijpma@intelvision.net
19.	Marc Jean-Baptiste	SIF	marc@sif.sc
20.	Katy Beaver	PCA	kbeaver@seychelles.net
21.	Joseph Rath	PCU + TESS	j.rath@pcusey.sc

ANNEX 2 of the IAS Workshop Report: Workshop programme

GOS- UNDP-GEF PROGRAMME COORDINATION UNIT

MEETING TO REVIEW FINDINGS AND DISCUSS NEXT STEPS OF THE CONSULTANCY UNDER THE BIOSECURITY PROJECT:

REVIEW & EVALUATION OF INVASIVE ALIEN SPECIES CONTROL (IAS) AND ERADICATION ACTIVITIES IN SEYCHELLES and DEVELOPMENT OF A FIELD GUIDE ON IAS MANAGEMENT

TUESDAY 29 SEPTEMBER 2009 08.30 - 12.00 CARE House conference and training room

Introduction:

This short-term consultancy is currently being undertaken by the local NGO, Plant Conservation Action group (PCA), with advice and input from an international consultant Dr Charlotte Causton. There are two main objectives (according to the ToR):

- 3. To review IAS management field activities in the Seychelles, with particular reference to mitigation, control and eradication measures, including an evaluation of their effectiveness and efficiency.
- 4. To develop a "field guide on IAS control and eradication measures".

Workshop Objectives:

- 4. To briefly review the results of Objective 1 (Review of IAS management field activities in the Seychelles), including the results of the Questionnaire previously sent out to most of the stakeholders.
- 5. To discuss what form of "field guide" (see Objective 2 above) would be most useful for stakeholders, and/or whether this is indeed the most valuable 'next step' in the consultancy as there are other options.
- 6. To make recommendations for this 'next step'.

Workshop Facilitators:

- Jan Rijpma (GOS-UNDP-GEF Biodiversity Programme Manager)
- Katy Beaver and James Mougal (on behalf of PCA)

Proposed Programme:

TIME	TOPIC	FACILITATOR
08.30 - 08.40	Welcome + Background of the assignment	Jan Rijpma
08.40 - 08.45	IAS? (creative exercise)	Katy
08.45 - 09.30	Management of IAS: The review process / results / missing information + Questionnaire responses and analysis	James
09:30 - 10:00	Introduction to the 'Next Step': a. Field guide (if so what format?); b. Field testing; c. Action Plan; d. Prioritisation system	Katy
10:00 - 10:20	Tea / Coffee	
10.20 - 11.20	Small group discussions about the 'Next Step'	Katy
11:20 - 12:00	Plenary - Feedback from groups - Discussion and recommendations	James / Katy / Jan
12:00	LUNCH	

Participants will include representatives from:

Dept of Environment, Dept of Natural Resources, Seychelles National Parks Authority, Seychelles Agricultural Agency, Island Development Co., NGOs, Private Islands, Resorts, Environmental Education, Landscape personnel, Community leaders, etc.

ANNEX 3 of the IAS Workshop Report: Small group discussion points

Field Guide?

- All 60 or so species identified? (with minimum info)
- · Fewer species for which there is enough info?
- A few selected important problem species only?
- Awareness raising guide rather than only management?
- What content / format is required?

Field trails?

- For which species?
- Where? Will stakeholders provide land areas?
- Who should do the trials? Are stakeholders willing?
- Who will fund?

Action plan?

Less detailed than a field guide.

- i. For each species, suggest whether eradication, control, containment or mitigation is best.
- ii. Identify species that have been successfully controlled: Give brief overview of methods but no details, only relevant references and contacts.
- iii. Identify species where efficacy of control methods not proven: Give basic appropriate methods based on what has been done here and elsewhere with refs and contacts. Recommend experiments/trials or other research.
- iv. Species where no successful control methods known: ?

System for prioritising IAS management?

This was considered a useful tool by 75% stakeholders.

It would require more time than is available to formulate but could be recommended as a next step.

- Devise criteria for use in decision making
- Give a weighting to each criterion
- Does this require a national priority list for IAS?
- · Should it be prepared on a national basis?
- <u>OR</u> for individual management situations?

ANNEX 4 Summary table of Invasive Alien Species (IAS) management activities carried out in the Seychelles

Species	Location	Date	Methodology (BC = Biological Control; IPM = Integrated Pest Management)	Management strategy	Success confirmed	Additional comments
MAMMALS			· · · · · · ·			•
Feral Cat	Aride	1930s	Dogs + boys	Eradication	✓	Physical method possible on small island with few cats.
	Fregate	1960-1982	Poison / traps	Control and Eradication	✓	Few details, first attempts (1960s/1970s) were control only. Eradication in the early 1980s more systematic but again few details; eradication confirmed only by lack of cats seen.
	Cousine	1983-1985	Traps	Eradication	~	Physical method (baited traps) possible on small island; eradication confirmed only by lack of cats seen.
	Curieuse	2000	Poison (0.1%1080) / traps	Eradication	✓	Feasibility study done; systematic programme of poisoning, followed by baited traps; but not followed up by systematic monitoring.
	Denis	2000	Poison (0.1%1080) / traps	Eradication	√	Feasibility study done; systematic programme of poisoning, followed by baited traps; but not followed up by systematic monitoring.
	North	2003	Poison (0.1%1080) / traps	Eradication	√	Population estimate prior to systematic pre-baiting, followed by poisoning and trapping; follow-up monitoring carried out.
	D'Arros	2003	No details	Eradication	~	Suitable two years wait period before confirmation of eradication.
	Cosmoledo	2007-2008	Incidental poisoning during rat control programme + lack of food	Control	(✓)	After rat poisoning (Brodifacoum), cat numbers had decreased through incidental poisoning + subse-quent lack of food; proper eradication attempt with cat poison abandoned due to logistical problems.
	Aldabra	ongoing	Shooting	Control	(✓)	Trapping difficult because of non-target species; opportunistic shooting.
Black Rat (<i>Rattus rattus</i>)	Granitics / outer islands	Pre-1950s	Traps / poison (Zinc phosphide) + bounty	Control	(✓)	In the early 20 th century, traditional 'lasonmwar' traps were often used, later replaced with metal traps of
(1950s- 1980s	Traps / poison (anticoagulants) + bounty	Control	(✓)	various types & rat glue. Bounty was increased over time. Campaigns helped to keep populations down in coconut plantations
		1980s onwards	Traps / poison / public awareness campaigns	Control	(√)	As before, with poison often in block bait form. Campaigns mostly carried out by Heath Ministry.
	Mahé	1949-1952	BC (Barn owl)	Control	X	No feasibility study done. Introduction proved a mistake as although Barn owls ate rats, they also ate indigenous fairy terms in considerable numbers and spread to other islands; a bounty was introduced for the owls in 1969.
	Mahé (La Misere	2006-2009	Poison bait / traps	Control	✓	Grid system developed with regular trapping and follow-

Species	Location	Date	Methodology (BC = Biological Control; IPM = Integrated Pest Management)	Management strategy	Success confirmed	Additional comments
	& Haut Barbarons					up monitoring.
	Anonyme	2003	Poison (Brodifacoum 20ppm bait blocks) - land based application + traps	Eradication	X	Grid system and regular monitoring. Post-eradication monitoring interrupted by sale of island, so rats were able to recolonises part of the island.
		2006	Poison (Brodifacoum 20ppm bait blocks) - land based application + traps	Eradication / Control	✓	Same system used as in 2003, with continuing follow-up monitoring. Occasional reinvading rats from Mahé are eliminated through the post-eradication protocol.
	Ile aux Rats (near Anonyme)	2005	Poison (Brodifacoum 20ppm bait pellets) - land based application x 1 + traps	Eradication / Containment	✓	Small islet only. Systematic method with follow-up monitoring. Partly carried out to prevent reinvasion of nearby Anonyme Island.
	Bird	1996	Poison (Brodifacoum 20ppm bait blocks and bait pellets) - land based application x2 + follow-up system	Eradication	✓	Feasibility study done. Grid system and regular monitoring. Post-eradication monitoring. Protocols in place for some non-target species, but some ground- feeding birds affected. Post-eradication protocols.
	Curieuse	2000	Poison (Brodifacoum 20ppm bait pellets) - aerial application x 2 + follow-up with some bait blocks	Eradication	X	Feasibility study done. Helicopter flew along transect system. Regular monitoring. Protocols in place for some non-target species, but some ground-feeding birds affected. Failure possibly due to rats remaining in mangrove or to lack of post-eradication protocols.
	Denis	2000	Poison (Brodifacoum 20ppm bait pellets) - aerial application x 2 + follow-up with some bait blocks	Eradication	X	Feasibility study done. Helicopter flew along transect system. Regular monitoring. Protocols in place for some non-target species, but some ground-feeding birds affected. Failure probably due to lack of post-eradication protocols.
		2002	Poison - land-based application	Eradication	✓	No details made available.
	North	2003	Poison (Brodifacoum 20ppm bait pellets) - aerial application x 3 + follow-up system	Eradication	X	Feasibility study done + systematic methodology and regular monitoring. Helicopter flew along transects. Protocols in place for some non-target species, but some ground-feeding birds affected. Failure probably due to failure to follow post-eradication protocols well enough.
		2005	Poison (Brodifacoum 20ppm bait pellets) - aerial application x 4 + follow-up system	Eradication	~	Pre-programme preparation for follow-up protocols. Systematic methodology and regular monitoring. Helicopter mostly flew along transects. Protocols in place for some non-target species, but some ground- feeding birds affected. Post-eradication protocols strictly followed.
	Cosmoledo (Grande IIe, Grand Polyte, Petit Polyte)	2007	Poison (Brodifacoum 20ppm bait pellets) - aerial application x 2 + follow-up system	Eradication	✓ 	Systematic methodology and regular monitoring. Helicopter flew according to ground markers. Effects on non-target species monitored - no mortality. Systematic trapping 1 year later confirmed success.
Norwegian Rat (<i>Rattus</i>	Mahé	1900s onwards	Traps / poison	Control	(√)	The same methods used for Black rats are used for Norwegian rats, with limited success at reducing

Species	Location	Date	Methodology (BC = Biological Control; IPM = Integrated Pest Management)	Management strategy	Success confirmed	Additional comments
norvegicus)						populations.
	Fregate	1995	Poison (Flocoumafen) - ground- based + traps	Control	(*)	Only semi-systematic following this first invasion but protocols in place for avoiding non-target species.
		1995-1996	Poison (Difenacoum) - ground- based + traps	Eradication	X	Semi-systematic methods with partial grid system. Poisoning was not continuous. Traps sometimes caught non-target species.
		1996	Poison (Brodifacoum bait blocks + bait pellets) - ground-based	Eradication	X	More systematic using grid system. Protocols in place for non-target species but programme stopped after 1 Magpie robin died probably from secondary poisoning.
		2000	Poison (Brodifacoum 20ppm bait pellets) - aerial application x 3 + follow-up system	Eradication	✓ 	Feasibility study done. Helicopter flew along transect system. Regular monitoring. Protocols in place for all important non-target species, but some ground-feeding birds affected. Post-eradication monitoring and protocols in place.
	D'Arros	2004	Poison	Eradication	✓	No details made available.
	Conception	2007	Poison (Brodifacoum 20ppm bait pellets) - aerial application x 2 + follow-up system	Eradication	~	Feasibility study done. Helicopter use visual transect system. Regular monitoring. Protocols + monitoring in place for important non-target species, no losses. Follow-up monitoring.
Feral Rabbit	Bird	1995-1996	Poison (20ppm Brodifacoum) : Land-based application	Eradication	~	Visual population assessment only; carried out as part of rat eradication programme - rabbits killed by same poison; systematic land-based methodology but no follow-up monitoring of rabbits.
House Mouse	Bird	1995-1996	Poison (20ppm Brodifacoum) : Land-based application	Eradication	X	Visual population assessment only; carried out as part of rat eradication programme - mice killed by same poison; systematic land-based methodology but no follow-up monitoring; mice either survived or reinvaded.
	Fregate	2000	Poison (20ppm Brodifacoum) : Aerial application	Eradication	✓assumed	Carried out as part of rat eradication programme - mice killed by same poison; systematic aerial poisoning; no details about follow up monitoring.
Feral goat	Aldabra	1987-1988 1993-1997	Shooting. Judas goats + shooting.	Control	✓ ✓	2 systematic shooting trips, followed by opportunistic shooting 1989-1992.
		2007-2009	Neutered Judas goats + shooting	Eradication	X	Eradication successful on 2 islands, but only control achieved on the largest. Opportunistic shooting 2000-
		onwards		Eradication	?	2006 kept numbers fairly low. Sterilized Judas goats more successful but difficult terrain means longer time necessary to achieve success (radio batteries to be replaced).
BIRDS						
Indian House Crow	Mahé	1977-1994	Mainly shooting + trial with poison + bounty + awareness	Eradication	(✓)	Occasional invading birds can be shot, but if allowed to multiply, crows cannot be shot in large groups as they

Species	Location	Date	Methodology (BC = Biological Control; IPM = Integrated Pest Management)	Management strategy	Success confirmed	Additional comments
			programme			become gun-shy. Chemical (alphachloralose) in bait attracted non-target species so could not be used. Eventually all individual birds were shot.
		1998 onwards	Shooting of individual birds + awareness programme	Containment / Eradication	\checkmark	All the occasional re-invading crows have been individually shot and killed to prevent spread.
Ring-necked Parakeet	Mahé	2000s	Shooting	Control	Х	Shooting effort has been minimal and small or large flocks are now seen in some parts of Mahé.
House Sparrow	Mahé	2002-2003	Shooting + a variety of trapping methods	Containment / Eradication	(√)	Occasional invading birds must be eliminated at once. If allowed to breed, systematic trapping at nest sites seemed most effective.
Barn Owl	Central Granitics	1969 onwards	Bounty system	Control	X	Relatively ineffective at keeping numbers down.
	Aride	1996 onwards	A variety of trapping methods + shooting	Eradication / Control	✓	Trapping is often more effective if a decoy bird and / or recorded calls are used. Shooting only possible if licensed gun + shooter available. New invasions require immediate action.
	North Island	2003-2009	Incidental poisoning during rat eradication + starvation	Eradication	✓	Rat eradication left little for barn owls to eat and the island currently has few seabirds; but reinvasions possible.
	Cousin / Cousine	1999 onwards	Shooting	Eradication	~	Occasional invading birds (attracted by seabird populations) apparently shot
Indian Myna(h)	Fregate	1992	Various trapping methods + poison (alphachloralose)	Experimental Control	X	Trapping not very effective; Mynas developed aversion to food containing the poison. Non-target endemic birds would be affected by poisons.
		1993-1997	Shooting	Control	(✓)	Many birds shot, but not systematic enough to really impact the population.
		1998-2002	Shooting + nest trapping	Control + Experimental	(✓)	Nest trapping had some success. More systematic shooting considerably reduced the Myna population but post-2002 this stopped and the population increased again.
	Aride	1993-1994	Shooting	Eradication	✓	16 of 17 birds shot; the last apparently disappeared.
		2001	Shooting	Eradication	✓	2 newly invading birds shot.
	Cousin	2000-2002	Nest trapping + shooting	Eradication	√	Small population eradicated.
	Cousine	<1996	Trapping + shooting + bounty	Control	(•)	Small population apparently controlled.
		2002 onwards	Shooting	Control / Eradication	\checkmark	Apparently eliminated by shooting and occasional reinvading birds also shot.
	Denis	2001	Poison (DRC1339) + shooting	Experimental / Control	(*)	Pre-baiting, followed by poisoning reduced Myna population in several areas; follow-up shooting was terminated due to reappearance of rats (precluding introduction of rat-sensitive threatened birds).
	North	2005	Incidental poisoning during rat eradication (Brodifacoum)	Control	(*)	Myna population considerably reduced (c50%) but subsequently increased again.

Species	Location	Date	Methodology (BC = Biological Control; IPM = Integrated Pest Management)	Management strategy	Success confirmed	Additional comments
		2006-2008	Poison (DRC1339) + nest trapping	(Eradication) / Control	X (*)	Systematic programme of pre-baiting and poisoning reduced Myna population c70%. Planned follow-up shooting impossible due to delays with gun licensing. Subsequent nest trapping not effective; nor further poisoning (many non-target species attracted).
		2008-2009	Shooting	Control	(✓)	Although Myna population increased during 2008, subsequent shooting again brought numbers down.
Red-whiskered Bulbul	Assumption	2005	Bounty system	Control / Containment	Х	Not systematic. Partly carried out because of risk to Aldabra endemic bulbul and other endemic species.
Cattle egret (<u>not</u> alien)	Mahé, Praslin (rubbish dumps near airports)	2000s	Poison + shooting	Control	(✓)	Poison not very effective due to too much food choice. Populations somewhat limited by shooting, especially at breeding sites.
REPTILES	•	1			1	at at
Crested tree lizard	Ste Anne	2004-2006	Mainly pursuit and capture + bounty	Eradication / Control / Containment	× (✓)	Delayed action after 1 st detection reduced the likelihood of eradication + lack of capacity hampered control measures + lack of long term follow up means lizards could spread to other islands.
INVERTEBRATES	(including agricult	ural pests)				
Crazy ant	Granitics (Mahé + later other	1969	Insecticide (Dieldrin in fish bait)	Experimental trial / Control	X	Inconclusive and this pesticide now banned.
	islands)	1976-1994	Poison (c.20 tested) + bait and poison sprays (Gamma-BHC, Chlorpyrifos, Bendiocarb)	Experimental trials / Control	✓ 	Very systematic testing methods. Both baits and poisons were tested. Aldrin (now banned) proved most effective in bait. Sprays were effective but could be applied only by professionals. In 1994 most of these chemicals were banned.
		Current	Poison bait (Dursban = Chlorpyrifos) + IPM	Control	✓ 	Although Dursban is toxic to humans and the environment, it appears to still be used by some. IPM includes destroying the nest and good field sanitation. Other poisons (e.g. Fipronil, Pyriproxifen) may now be more effective with less effect on non-target species.
	Bird	1998-2003	Poison spray (unknown) + poison bait (Hydramethylnon)	Control	~	Apparently effective in keeping numbers down. Current situation unknown due to lack of information.
Coccids (scale insects & mealy	Granitics	1911	BC (fungus)	Control	\checkmark	Seems to have been a very specific biocontrol agent - effective against the Coffee green scale
bugs)	Mahé, Praslin, La Digue, North Silhouette, Platte	1930-1938	BC (ladybird predator spp.)	Control	√?	Since the 1960s no studies have been conducted to determine the effectiveness of the Coccinellid (ladybird) species.
	Granitics	1980s	Insecticides (Ultracide & Rogor)	Control	~	Effective but insecticides should be rotated - these pests can develop resistance. Products with systemic rather
		2000 onwards	Other insecticides + IPM	Control	~	than contact action should be used. IPM = pruning, change planting regime, reduce fertilisation.

Species	Location	Date	Methodology (BC = Biological Control; IPM = Integrated Pest Management)	Management strategy	Success confirmed	Additional comments
	Aldabra	1989-1990 onwards	BC (ladybird predator sp.)	Control	~	Ladybird <i>Rodolia chermesina</i> introduced to control Mealy bug <i>lcerya seychellarum</i> , using systematic procedures. Failure to follow up systematically but opportunistic monitoring shows apparent successful control, with limited localised flare-ups.
Diamond-back moth (poss. not	Granitics	1960-1980s	Insecticides (Agrocide & Lannate)	Control	~	The mentioned insecticides are extremely toxic, therefore not recommended anymore.
alien)		1980s onwards	BC (<i>Bacillus thuringi-ensis</i> = Thuricide)	Control	✓	Thuricide is a commercial biocontrol agent. Can be effective but depends greatly on the strain of <i>Bacillus thuringiensis</i> being used.
		1980s-2004 onwards	Insecticides (Decis, Ambush, Malathion) + IPM	Control	~	Effective but insecticides should be rotated with the commercially available biological control agent <i>Bacillus thuringiensis</i> (Thuricide) - the pest can easily develop resistance. IPM = good field sanitation + netting, intercropping, mixed cropping or crop rotation.
	Agric Research Station, Anse Boileau, Mahé	2007	New insecticides (Teflubenzuron & Lufenuron) + BC <i>Bacillus</i> <i>thuringiensis</i>	Experimental trial	✓	Teflubenzuron was the most effective insecticide. It seems that <i>Bacillus thuringiensis</i> (Thuricide) when used alone is not too effective.
Banana (weevil) root borer	Granitics	1952-1954 1960s on	BC (predatory Hister beetles)	Control	X	They are not specific predators of the Banana weevil, so their effectiveness against the pest is considered minimal.
		1960s	Insecticide (Dieldrin)	Control	~	Extremely toxic pesticide - no longer recommended.
		1980s onwards	New insecticides (Primicid, Carbofuran, Nemacur) + IPM	Control	~	The mentioned insecticides are extremely toxic therefore should be used with precautions. IPM = good field sanitation measures. Sex pheromone traps and microbial bio-control are new control methods that could be used in Seychelles.
Citrus black-fly	Granitics	1950s	Chemical	Control	(✓)	Simple use of kerosene/soap mixture or oil emulsions recommended. Although other chemicals can be used, once the biocontrol agent was introduced pesticides were not required.
		1955/1956	BC (parasitic Eulophid wasp)	Control	~	The introduction was considered a complete success, with occasional outbreaks being quickly controlled by the Eulophid wasp. However, no formal quantitative evaluation was carried out. Biocontrol is used elsewhere in the world with success.
	Poivre & Alphonse	1958	BC (parasitic Eulophid wasp)	Control	~	No records of results but assumed to be successful.
African Rhinoceros beetle	Granitics	1949-1969	BC (parasitic Scoliid wasp)	Control	(✓)	Good field sanitation seemed to be important for the establishment of a Scoliid wasp colony.

Species	Location	Date	Methodology (BC = Biological Control; IPM = Integrated Pest Management)	Management strategy	Success confirmed	Additional comments
(poss. not alien)	North Island	1954-1956	BC (parasitic Scoliid wasp) + good field sanitation measures	Experimental trial / Control	√	Good field sanitation was presumed to be the reason behind the successful establishment of the Scoliid wasp.
	Mahé, Praslin, La Digue	1954	BC (predatory Elaterid beetle)	Control	Х	It is presumed that both beetle species did not survive.
	Curieuse, La Digue, Praslin, Poivre	1960/1961	BC (predatory Carabid beetle)	Control		
	Praslin	1962	Insecticide (Paradichlorobenzene)	Control	(✓)	Not too successful (50% of the treated palms were eventually attacked).
	Granitics	1971-1972	BC (Rhabdovirus oryctes virus)	Experimental	Unknown	Infection rate was relatively high but the Rhinoceros
	Ste Anne, Mahé, Praslin	1981-1983	BC (Baculovirus oryctes virus)	trial / Control	(✓)	beetle was able to maintain a breeding population.
Melittomma beetle (<u>not</u> alien)	Granitics	1911-1914 onwards 1941	Excision + tar + good sanitation measures Fumigation with insecticide (Paradichlorobenzene)	Control	(✓)	Though the physical treatment was reported to be effective, fumigation was assumed to be more effective.
	Praslin	1953-1958	Fumigation with insecticide (Paradichlorobenzene)	Experimental trial / Control	(✓)	Fumigation was confirmed to be partially effective (<53% of the treated palms remained infected).
	Mahé, Cerf	1955	BC (predatory Monotomid beetle)	Control	Х	It is presumed that the predatory beetle did not survive.
	Granitics	1959-1970s onwards	Excision + coal-tar/creosote + good sanitation measures	Control	~	Creosote/coal-tar treatment must be applied 3 to 5 days after gouging.
	Mahé	1970s	Numerous insecticides	Experimental trials / Control	(✓)	Effective only as a preventative measure - the insecticides used are persistent organic pollutants - not recommended by SAA.
	Victoria Botanic Garden	2000s	Excision + new insecticide (Confidor) & fungicide (CAC Balsam)	Experimental trial / Control	✓	Seems to have been effective against newly infected palms.
Spiralling whitefly	Granitics	2003 onwards	Numerous insecticides (Malathion, Decis, Vertimec, Confidor) + improvement of plant hygiene	Control	(*)	IPM may be the most successful method so far, using either pesticides or simpler soap/kerosene sprays linked with good field sanitation. Elsewhere in the world biocontrol using parasitic wasps has been very successful.
		2004 onwards	Light traps covered with Vaseline coating	Control	unknown	This was suggested but no records of follow-up.
Coconut whitefly	Mahé, Praslin, Silhouette, Ste Anne, La Digue	2007 ?	BC (a new species of parasitoid - being described)	Control	✓	Effective: there seems to be a clear correlation between pest population levels & rate of parasitism, based on observations made on Mahé and La Digue.
Mediterranean fruit fly	Granitics	1980s	Plastic 'sandwich container' trap containing attractant (Trimedlure) + insecticide-impregnated block	Control	(*)	Mainly introduced to monitor the adult population size. Partially successful in reducing population expansion.
		1980s	Insecticides (Diazinon & Dipterex)	Control	(√)	Later considered expensive and harmful to natural

Species	Location	Date	Methodology (BC = Biological Control; IPM = Integrated Pest Management)	Management strategy	Success confirmed	Additional comments
		onwards			Х	enemies of the pest.
		2000s onwards	Pheromone-impregnated blocks with insecticide (Malathion) + IPM	Control	(✓)	IPM = good field sanitation measures + bagging of fruits + use of chemicals.
		2000s onwards	Cover spray or Bait spray (Malathion combined with protein hydrolysate liquid attractants)	Control	(√)	Best used in combination with good field sanitation measures.
Melon fruit fly	Mahé	2005-2007	Pheromone (Cuelure)- impregnated blocks with insecticide (Malathion) + IPM	Control and Eradication	(✓) X	IPM = good field sanitation measures + bagging of fruits. Programme partially successful but did not eradicate the fruit fly.
		2005-2007	Insecticides (e.g. Malathion, Decis, Spinosad)	Control	~	Cover sprays used by farmers; Spinosad proved successful but very expensive.
		2007	Insecticides (Karate zone, Decis)	Control	✓	Study showed better control of pupae in cucumber by Karate zone.
Giant African Snail	Granitics	1950s onwards	Collect adult snails + destroy their eggs & hideouts daily + establish physical barriers	Control	✓	Method works well on a very small scale but needs to be systematic and can be very labour intensive.
	Mahé, Praslin, Cerf, Ste Anne	1957/1958	BC (two carnivorous snail spp.)	Control	Х	Small population size; restricted to lowland areas. Euglandina sp. is only found around Victoria.
	Granitics	1961 onwards	Poison bait (Metaldehyde) + Epsom salt sprinkled on ground	Control	√	Reasonably successful if used regularly.
MARINE			• · · · · · · · · · · · · · · · · · · ·			
Crown of Thorns (not alien)	Mahé	1998	Poison (sodium bisulphite)	Control	(√?)	Injection of poison. Results could not be evaluated due to coral bleaching event.
		2009	Physical removal from sea	Control	✓	Easy and successful but labour intensive.
Black-spined Urchin (<u>not</u> alien)	Mahé	2000	Destroyed in situ with metal tools	Control	~	Only to be used when populations are high (200 per 250m ²) and significant coral recruitment taking place.
TREES						
Cinnamon	Congo Rouge, Mahé	1995-1996	Hand removal (uprooting) + Cutting / felling + Ring barking	Experimental trials / Control	(✓)	Physical control is possible on a very small scale but incredibly labour intensive.
			Herbicide trial using Roundup		x	Can be effective at high dose (<15ml concentrate) but can have negative impact on non-targeted plant species.
	Silhouette	1990s onwards	Ring barking of mature trees	Control	✓	Quite effective but should be done thoroughly + weekly removal of shoots. Very labour intensive.
Chinese guava	Congo Rouge, Mahé	1995-1996	Hand removal (uprooting) + Cutting / felling + Ring barking	Experimental trials / Control	(✓)	Physical control is possible on a very small scale but incredibly labour intensive.
			Herbicide trial using Roundup		x	Can be effective at high dose (<15ml concentrate) but can have negative impact on non-targeted plant species.
Albizia	Mahé water catchment areas	1990s	Cutting / felling + Ring barking	Control + Eradication	(✓)	Ring barking is more appropriate but should not be undertaken in public areas - as safety precaution.

Species	Location	Date	Methodology (BC = Biological Control; IPM = Integrated Pest Management)	Management strategy	Success confirmed	Additional comments		
OTHER PLANTS						·		
Bracken fern (<u>not</u> alien)	Granitics	1958-1968	Cutting (x2 or x3)	Eradication	(√)	Method worked well, but needs to be systematic - followed by planting with desirable plant species. Very labour intensive.		
Gazontrelle (grass)	Granitics (forestry areas)	1951-1958	Weeding, change planting regime, mulching	Control	(✓)	Method worked well, but needs to be systematic - followed by planting with desirable plant species. Very labour intensive.		
		1955	Herbicide trial using Tecane	Experimental trials / Control	X	More expensive than physical control over the long- term.		
		1966	Herbicide trial using Gramoxone		~	No info on whether it was ever tried on a large scale or its cost effectiveness. The herbicide is highly toxic to mammals.		
Fo watouk (<i>Clidemia</i>)	Mahé	1990s	Hand removal (uprooting) - dept. of environment staff	Control + Containment	(✓) X	Physical control is possible on a very small scale but very labour intensive and needs to be systematic,		
			2003	2003	Uprooting - community mainly + awareness campaign	Control + Containment	(✓) X	including post-control monitoring programme. It did not prevent the spread of this invasive.
INVASIVE CREEPE								
Filodendron (<i>Epipremnum</i>)	Vallée de Mai	1997-2002	Cutting (as high as possible all round tree trunk) + hand removal (uprooting)	Experimental Eradication	✓	Method works well for small area but needs to be systematic including regular monitoring programme. Very labour intensive.		
	Mahé	2003	Herbicide trial using salt water and Roundup	Experimental trial / Control	X	Not effective.		
			Herbicide trial using Vigilant		~	Preliminary results were good but the long-term effects remain untested.		
<i>Merremi</i> a (Lalyann darzan)	Intendance, Mahé	1999	Hand removal (uprooting)	Experimental trail / Control	✓	Method works well, needs to be systematic including post-control monitoring programme.		
	Mahé (c.26ha in areas of high biodiversity)	1999-2001	Hand removal (uprooting)	Eradication	(✓)	Method works well if systematic + followed by planting with desirable plant species. Very labour intensive and expensive.		
<i>Quisqualis indica</i> (Rangoon creeper)	Cousin	2000s	Herbicide (Vigilant)	Control	✓	Quite effective and apparently more cost-effective than physical control, but its impact on non-target species remains untested.		
WATER WEEDS								
Water lettuce (<i>Pistia</i>)	Mahé (NE Point & Anse Royale), Praslin, La Digue	2000-2004	Hand removal (uprooting)	Control	(✓)	Physical control is possible on a small scale but very labour intensive; needs to be systematic including post- control monitoring. Potential for bio-control.		
Water hyacinth (<i>Eichhornia</i>)	Mahé (NE Point & Anse Royale), La Digue	2000-2004	Hand removal (uprooting)	Control	(✓)	Physical control is possible on a small scale but very labour intensive; needs to be systematic including post- control monitoring. Bio-control is reported to be more successful and self-sustaining.		

ANNEX 5 Table of pesticides and herbicides

(*) Pesticide or herbicide not listed under SECHDULE 1 of the PESTICIDES CONTROL ACT, 1996, but has been used in Seychelles post-1996.

Pesticides & Herbicides	Other Names	Active Ingredients	Pests & Weeds	Precautions
1080 *	ACTA 1080 Concentrate, Sodium monofluoroacetate	(mono)fluoroacetate (with a sodium salt) a naturally- occurring plant toxin	Feral cat and dog	Harmful if swallowed. Highly toxic to birds and mammals. Very low in toxicity to aquatic invertebrates.
Alpha Chloralose	Alpha-D- Glucochloralose, Chloralose	alphachloralose (a narcotic drug; acts by anaesthetising rather than killing)	Pest birds (Indian house crow, Indian myna, Turtle dove, House sparrow, Magpie)	Harmful if swallowed or by inhalation. Highly toxic to birds and mammals.
Ambush	Talcord, Permethrin, Pounce	permethrin (a synthetic pyrethroid)	Scale insects, Mealy bugs, Diamond back moth, Caterpillars, Bean pod borer	Highly toxic to bees and fish and other aquatic organisms. Low in toxicity to mammals.
Brodifacoum rat bait	Ratak, Volak, WBA 8119	brodifacoum (a highly toxic indirect anticoagulant)	Black rat, Norwegian rat, House mouse	Harmful if swallowed in large quantities. Highly toxic to birds and mammals.
Carbaryl	Sevin, Carbafor	carbaryl (1-naphthyl methylcarbamate)	Scale insects, Mealy bugs, Diamond back moth, Bean pod borer, Beetles, Mites, Aphids, Moths, Caterpillars, Leaf miners	Harmful if swallowed, absorbed through the skin, inhaled or if in the eyes. Highly toxic to bees, aquatic and estuarine invertebrates.
Carbofuran *	Faradan, Curater	carbofuran (an extremely toxic carbamate)	Banana root borer, Nematodes, Rootworms, Wireworms, Aphids, Thrips	Poisonous if swallowed, harmful or fatal in prolonged or repeated contact with skin or by inhalation. Extremely toxic to humans, wildlife, fish and other aquatic organisms.
Confidor *	Admire, Gaucho, Imidacloprid	imidacloprid (a systemic neonicotinoid)	Scale insects, Mealy bugs, Spiralling whitefly, Mites, Aphids, Leaf miners, Thrips, Termites	Harmful if swallowed or skin and eye contact. Highly toxic to bees. Low in toxicity to birds, mammals and fish.
Decis	K-orthrine, Deltamethrin	deltamethrin (a synthetic pyrethroid)	Scale insects, Mealy bugs, Diamond back moth, Melitoma beetle, Spiralling whitefly, Aphids, Leaf miners, Psyllids, Thrips	Harmful if swallowed, absorbed through the skin, inhaled or if in the eyes. Highly toxic to bees, aquatic and estuarine invertebrates.
Difenacoum	Difenacoum PW Block Bait, Ratsnip	difenacoum (an indirect anticoagulant)	Black rat, Norwegian rat, House mouse	Harmful if swallowed or skin and eye contact. Highly toxic to birds, mammals and aquatic organisms.

Pesticides & Herbicides	Other Names	Active Ingredients	Pests & Weeds	Precautions
DRC 1339 *	Starlicide	starlicide (3-chloro-p- toluidine hydrochloride, CPTH)	Pest birds (Indian myna, Turtle dove, House sparrow, Indian house crow, Magpie)	Highly toxic to birds and aquatic invertebrates. Low in toxicity to mammals.
Dursban	Lorsban, Brodan, Detmol UA, Pyrinex, Chlorpyrifos	chlorpyrifos (an extremely toxic crystalline organophosphate)	Crazy ant, other Ants, Borers, Bark beetles, Spider mites, Termites, Cockroaches, Fleas	Poisonous if swallowed, harmful or fatal in prolonged or repeated contact with skin or by inhalation. Extremely toxic to humans, wildlife, fish and other aquatic organisms.
Epsom salt *	Magnesium sulfate	magnesium (sulphate) sulfate	Slug and snail	Harmful if swallowed or inhaled or by prolonged or repeated skin contact.
Fipronil *	Regent, Frontline	fipronil (a broad-spectrum phenylpyrazole)	Crazy ant, other Ants, Beetles, Cockroaches, Fleas, Ticks, Termites, Mole crickets, Thrips, Rootworms, Weevils	Harmful if swallowed. Highly toxic to bees, birds, small mammals, fish and aquatic invertebrates. Very low in toxicity to earthworms, soil micro-organisms and aquatic plants.
Flocoumafen	Storm Secure Wax Block, Stratagem Securable Wax Block	flocoumafen (an indirect anticoagulant)	Black rat, Norwegian rat, House mouse	Harmful if swallowed in large quantities. Moderately toxic to birds and mammals. Very low in toxicity to fish and other aquatic organisms.
Gramoxone	Paraquat	paraquat (N,N'-dimethyl- 4,4'-bipyridinium dichloride)	Broad-leaved trees and shrubs and grasses	Harmful if swallowed or inhaled or skin and eye contact. Highly toxic to mammals. Moderately toxic to birds. Slightly toxic to many aquatic organisms. Low in toxicity to bees.
Hydramethylnon*	Amdro, Maxforce Ant and Insect Bait	hydramethylnon (an organic chemical compound)	Crazy ant, other Ants, Cockroaches, Crickets	Harmful if swallowed or after short-term skin contact. Highly toxic to fish and aquatic invertebrates.
Karate *	Warrior, Demand	lambda-cyhalothrin (a synthetic pyrethroid)	Melitoma beetle, Melon fruit fly, Caterpillars, Aphids, Thrips, Plant bugs, Bean pod borer, Beetles	Harmful if swallowed or skin and eye contact. Highly toxic to bees, fish and other aquatic organisms. Low in toxicity to large mammals and birds.
Malathion	Mercaptothion, Cythion, Carbofos, Maldison	malathion (an organophosphate parasympathomimetic)	Scale insects, Mealy bugs, Medfly, Melon fruit fly, Diamond back moth, Spiralling whitefly, Aphids, Leaf miners, Housefly	Harmful if swallowed or inhaled or skin and eye contact. Highly toxic to bees, fish and other aquatic organisms.

Pesticides & Herbicides	Other Names	Active Ingredients	Pests & Weeds	Precautions
Metaldehyde snail pellets	Antimilice, Limatox, Meta, Slug-Tox, Ortho Metaldehyde 4% Bait	metaldehyde (a molluscicide)	Slug and snail	Harmful if swallowed or inhaled or skin and eye contact. Moderately toxic to mammals, birds and aquatic organisms.
Nemacur	Fenamiphos, Bay 68138	fenamiphos (a systemic organophosphate nematicide)	Banana root borer, Nematodes, Citrus root weevil	Poisonous if swallowed, harmful or fatal in prolonged or repeated contact with skin or by inhalation. Extremely toxic to humans, wildlife, fish and other aquatic organisms.
Nomolt	Teflubenzuron, Dart, Calicide, Nemolt	teflubenzuron (a non- systemic insect growth regulator)	Diamond back moth, Caterpillars, Beetles, Flies, Housefly, Mosquito Iarvae	Highly toxic to fish and other aquatic organisms and bees. Low in toxicity to mammals.
Orthene *	Acephate	acephate (an organophosphate foliar)	Scale insects, Mealy bugs, Spider mites, Thrips, Caterpillars, Aphids, Leaf beetles, Leaf miners, Root weevils, Whiteflies	Harmful if swallowed or inhaled or skin and eye contact. Highly toxic to bees. Moderately toxic to birds. Low in toxicity to fish.
Primicid	Fernex, Pirimiphos- ethyl	pirimiphos-ethyl (an organophosphate)	Banana root borer, other soil pests (dipterous maggots, rootworms and wireworms)	Poisonous if swallowed, harmful or fatal in prolonged or repeated contact with skin or by inhalation. Extremely toxic to humans, wildlife, fish and other aquatic organisms.
Rogor	Cygon, Dimethoate	dimethoate (a systemic organophosphate)	Mealy bugs, most Scale insects, Spiralling whitefly, Caterpillars, Aphids, Thrips, Leaf miners, Mites, Psyllids	Harmful if swallowed or skin and eye contact. Toxic to wildlife, bees, fish and aquatic invertebrates.
Round up	Glyphosate, Accord Herbicide, Rodeo Aquatic Weed and Brush Herbicide	glyphosate (an isopropylamine salt)	Broad-leaved trees and shrubs and grasses	May cause slight skin or eye irritation. Slightly toxic to aquatic organisms. Low in toxicity to birds, mammals, bees and fish.
Sorba 050 match*	Lufenuron, Fluphenacur, Match	lufenuron (an insect growth regulator)	Diamond back moth, Caterpillars, Mites, Thrips, Beetles, Aphids, Whiteflies	Harmful if swallowed or inhaled or skin and eye contact. Highly toxic to crustaceans. Slightly toxic to fish and bees. Low in toxicity to mammals.
Spinosad *	GF-120 NF Naturalyte Fruit Fly Bait, Conserve, Comfortis	spinosad (a natural fermentation product of a soil bacterium <i>Saccharopolyspora spinosa</i>)	Fruit flies, Caterpillars, Thrips, Leaf miners, Spider mites, Fire ants, Leaf beetle larvae	May cause slight eye irritation. Slightly toxic to aquatic organisms. Low in toxicity to birds, mammals and fish.

Pesticides & Herbicides	Other Names	Active Ingredients	Pests & Weeds	Precautions
Thuricide	Bacillus thuringiensis, B.t., DiPel	Bacillus thuringiensis (a naturally occuring soil bacterium)	Diamond back moth, other moths, butterflies, certain beetles and some flies depending on the B.t. subspecies being used	Toxic to bees and earthworms (used according to product labels). Low in toxicity to birds, mammals and fish.
Ultracide	Suprathion, Supracide, Methidathion	methidathion (a non- systemic organophosphate)	Scale insects, Mealy bugs, Aphids, Mites, Thrips, Spiralling whitefly	Harmful if swallowed or inhaled or skin and eye contact. Highly toxic to humans, mammals, birds, bees and aquatic organisms.
Vertimec *	Affirm, Agri-Mek, Zephyr, Abamectin, Avermectin	abamectin (a natural fermentation product of a soil bacterium <i>Streptomyces</i> <i>avermitilis</i>)	Diamond back moth, Spiralling whitefly, Aphids, Mealy bugs, Mites, Leaf miners, Thrips, Psylla	Highly toxic to bees and fish and other aquatic invertebrates. Low in toxicity to mammals and birds.
Vigilant *		picloram (a potassium salt)	Broad-leaved trees and shrubs and climbing creepers	May cause slight skin or eye irritation. Low in toxicity to birds, mammals, bees and fish and other aquatic organisms.

(*) Pesticide or herbicide not listed under SECHDULE 1 of the PESTICIDES CONTROL ACT, 1996, but has been used in Seychelles post-1996.